ЛАБОРАТОРНЫЙ БП 0-30 ВОЛЬТ - СХЕМА


РАДИОСХЕМЫ




МЕНЮ


   Схемы блоков питания

ЛАБОРАТОРНЫЙ БП 0-30 ВОЛЬТ - СХЕМА


С тех пор как возобновил свою радиолюбительскую деятельность, меня часто посещала мысль о качественном и универсальном лабораторном блоке питания. Имевшийся в наличии и произведенный лет 20 назад блок питания имел лишь два напряжения на выходе – 9 и 12 вольт при токе порядка одного Ампера. Остальные необходимые в практике напряжения приходилось «выкручивать» добавляя разные стабилизаторы напряжения, а для получения напряжений выше 12 Вольт - использовать трансформатор и разные преобразователи.

Такая ситуация порядком надоела и стал присматривать схему лабораторника в интернете для повторения. Как оказалось многие из них это одна и та же схема на операционных усилителях, но в разных вариациях. При этом на форумах обсуждения этих схем на тему их работоспособности и параметров напоминали тему диссертаций. Повторять и тратиться на сомнительные схемы не хотелось, и во время очередного похода на Алиэкспресс вдруг набрел на набор конструктора линейного блока питания с вполне приличными параметрами: регулируемым напряжением от 0 до 30 Вольт и током до 3 Ампер. Цена в 7,5 $, делала процесс самостоятельной покупки компонентов, разработки и травлением платы просто бессмысленным. В итоге, получил по почте вот такой набор:

Не взирая на цену набора, качество изготовления платы могу назвать отменным.  В комплекте даже оказалось два лишних конденсатора на 0,1 мкф. Бонус - пригодятся)). Все что нужно сделать самому – это «включив режим внимания», расставить компоненты по своим местам и спаять. Китайские товарищи позаботились о том, чтобы перепутать, что либо смог только человек, впервые узнавший о батарейке и лампочке – на плату нанесена шелкография с номиналами компонентов. В финале получается вот такая плата:

Характеристики лабораторного блока питания

  • входное напряжение: 24 В переменного тока;
  • выходное напряжение: от 0 до 30 В (регулируемое);
  • выходной ток: 2 мА - 3 А (регулируемый);
  • пульсации выходного напряжения: менее 0.01%
  • размер платы 84 х 85 мм;
  • защита от короткого замыкания;
  • защита по превышению установленной величины тока.
  • О превышении установленного тока сигнализирует светодиод.

Для получения полноценного блока следует добавить лишь три компонента – трансформатор с напряжением на вторичной обмотке 24 вольта при 220 вольтах на входе (важный момент, о котором подробно ниже) и током 3,5-4 А, радиатор для выходного транзистора и кулер на 24 Вольта для охлаждения радиатора при большом токе нагрузки. Кстати, в интернете нашлась и схема данного блока питания:

ЛАБОРАТОРНЫЙ БП 0-30 ВОЛЬТ - СХЕМА

Из основных узлов схемы можно выделить:

  • диодный мост и фильтрующий конденсатор;
  • регулирующий узел на транзисторах VT1 и VT2; 
  • узел защиты на транзисторе VT3 отключает выход, пока питание операционных усилителей не будет нормальным
  • стабилизатор питания вентилятора на микросхеме 7824;
  • на элементах R16, R19, C6, C7, VD3, VD4, VD5 построен узел формирования отрицательного полюса питания операционных усилителей. Наличие этого узла обуславливает питание всей схемы именно переменным током от трансформатора; 
  • выходные конденсатор С9 и  защитный диод  VD9.

Отдельно нужно остановиться на некоторых компонентах примененных в схеме:

  • выпрямительные диоды 1N5408, выбраны впритык – максимальный выпрямленный ток 3 Ампера. И хоть диоды в мосте работают попеременно, все же не будет лишним заменить их более мощными, например диодами Шотки на 5 А;
  • стабилизатор питания вентилятора на микросхеме 7824 выбран на мой взгляд не совсем удачно – под рукой у многих радиолюбителей наверняка найдутся вентиляторы на 12 вольт от компьютеров, а вот куллеры на 24 В встречаются гораздо реже. Покупать такой не стал, решив заменить 7824 на 7812, но в процессе испытаний БП отказался от этой идеи. Дело в том, что при входном переменном напряжении в 24 В, после диодного моста и фильтрующего конденсатора получаем 24*1,41=33,84 Вольта. Микросхема 7824 прекрасно справится с задачей рассеивания лишних 9, 84 Вольта, а вот 7812 приходится тяжко, рассеивая в тепло 21,84 Вольта. 

Кроме того, входное напряжение для микросхем 7805-7818 регламентировано производителем на уровне 35 Вольт, для 7824 на уровне 40 Вольт. Таким образом, в случае простой замены 7824 на 7812, последняя будет работать на грани. Вот ссылка на даташит.

Учитывая вышеприведенное, имевшийся в наличии кулер на 12 Вольт подключил через стабилизатор 7812, запитав ее от выхода штатного стабилизатора 7824. Таким образом, схема питания кулера получилась хоть и двухступенчатой, но надежной. 

Операционные усилители TL081, согласно даташита требуют двуполярное питание +/- 18 Вольт – в целом 36 Вольт и это максимальное значение. Рекомендуемое +/- 15.

И вот тут начинается самое интересное относительно переменного входного напряжения величиной 24 Вольта! Если взять трансформатор, который при 220 В на входе, выдает 24 В на выходе, то опять же после моста и фильтрующего конденсатора получаем 24*1,41=33,84 В.

Таким образом, до достижения критической величины остается всего 2,16 Вольта. При увеличении напряжения в сети до 230 Вольт (а такое бывает в нашей сети), с фильтрующего конденсатора снимем уже 39,4 Вольта постоянного напряжения, что приведет к гибели операционных усилителей.

Выхода тут два: либо заменить операционные усилители другими, с более высоким допустимым напряжением питания, либо уменьшить количество витков во вторичной обмотке трансформатора. Я пошел по второму пути, подобрав количество витков во вторичной обмотке на уровне 22-23 Вольта при 220 В на входе. На выходе БП получил 27,7 Вольта, что меня вполне устроило. 

В качестве радиатора для транзистора D1047 нашел в закромах радиатор процессора. На нем же закрепил стабилизатор напряжения 7812. Дополнительно установил плату контроля оборотов вращения вентилятора. Ею со мной поделился донорский компьютерный блок питания ПК. Терморезистор закрепил между ребер радиатора.

При токе в нагрузке до 2,5 А вентилятор вращается на средних оборотах, при повышении тока до 3 А в течении длительного времени вентилятор включается на полую мощность и снижает температуру радиатора.

Индикатор цифровой для блока

Для визуализации показаний напряжения и тока в нагрузке применил  вольтамперметр DSN-VC288, который обладает следующими характеристиками:

  • диапазон измерений:  0-100 В 0-10A;
  • рабочий ток: 20mA; 
  • точность измерения: 1%;
  • дисплей: 0.28 " (Два цвета: синий (напряжение), красный (сила тока);
  • минимальный шаг измерения напряжения: 0,1 В;
  • минимальный шаг измерения силы тока: 0,01 A;
  • рабочая температура: от -15 до 70 °С;
  • размер: 47 х 28 х 16 мм;
  • рабочее напряжение, необходимое для работы электроники ампервольтметра: 4,5 – 30 В.

Учитывая диапазон рабочего напряжения существует два способа подключения:

  • Если источник измеряемого напряжения работает в диапазоне от 4,5 до 30 Вольт, то тогда схема подключения выглядит так:

  • Если источник измеряемого напряжения работает в диапазоне 0-4,5 В или выше 30 Вольт, то до 4,5 Вольт ампервольтметр не запустится, а при напряжении более 30 Вольт он просто выйдет из строя, во избежание чего следует воспользоваться следующей схемой:

 

В случае с данным блоком питания, напряжение для питания ампервольтметра есть из чего выбрать. В блоке питания есть два стабилизатора – 7824 и 7812. До 7824 длина провода получалась короче, поэтому запитал прибор от него, подпаяв провод к выходу микросхемы.

О проводах из комплекта

  • провода трехконтактного разъема тонкие и выполнены проводом 26AWG – толще тут и не нужно.  Цветная изоляция интуитивно понятна – красный это питание электроники модуля, черный это масса, желтый — измерительный провод;
  • провода двухконтрактного разъема – это провода токоизмерительные и выполнены толстым проводом 18AWG.

При подключении и сравнении показаний с показаниями мультиметра, расхождения составили 0,2 Вольта. Производитель предусмотрел подстроечные сопротивления на плате для калибровки показаний напряжения и тока, что является большим плюсом. В некоторых экземплярах наблюдается отличные от нуля показания амперметра без нагрузки. Оказалось, что решить проблему можно сбросом показаний амперметра, как показано ниже:

Картинка из интернета, потому прошу простить за грамматические ошибки в надписях. В общем со схемотехникой закончили - переходим к изготовлению коробки...

   Форум по БП



 


Поделитесь полезной информацией с друзьями:

Имя *:
Email:
Код *:
ДАТАШИТ
Например: TDA2030

Снижение расхода топлива в авто

Ремонт зарядного 6-12 В

Солнечная министанция

Самодельный ламповый

Фонарики Police

Генератор ВЧ и НЧ




Социальные сети

© 2009-2018, "Электронные схемы самодельных устройств". Электросхемы для самостоятельной сборки радиоэлектронных приборов и конструкций. Полезная информация для начинающих радиолюбителей и профессионалов. Все права защищены.